SuperLU: Sparse Direct Solver and
Preconditioner

X. Sherry Li
xsli@lbl.gov
http://crd.lbl.gov/~xiaoye/SuperLU

Argonne Training Program on Extreme-Scale Computing
(ATPESC)

August 8, 2014

Acknowledgements

= Supports from DOE, NSF, DARPA

= FASTMath (Frameworks, Algorithms and Scalable Technologies for
Mathematics)

= TOPS (Towards Optimal Petascale Simulations)
= CEMM (Center for Extended MHD Modeling)

= Developers and contributors
= Sherry Li, LBNL
= James Demmel, UC Berkeley
= John Gilbert, UC Santa Barbara
= Laura Grigori, INRIA, France
» Meiyue Shao, Umea University, Sweden
= Pietro Cicotti, UC San Diego
= Piyush Sao, Gerogia Tech
= Daniel Schreiber, UIUC
* Yu Wang, U. North Carolina, Charlotte
= Jchitaro Yamazaki, LBNL
= Eric Zhang, Albany High School

SuperLU tutorial

Quick installation

= Download site http://crd.lbl.gcov/~xiaoye/SuperLU
= Users’ Guide, HTML code documentation

= Gunzip, untar
= Follow README at top level directory

= Edit make.inc for your platform (compilers, optimizations, libraries, ...)
(may move to autoconf in the future)

= Link with a fast BLAS library
* The one under CBLAS/ is functional, but not optimized
* Vendor, GotoBLAS, ATLAS,...

SuperLU tutorial

Outline of Tutorial

= Functionality
= Sparse matrix data structure, distribution, and user interface
= Background of the algorithms

= Differences between sequential and parallel solvers

= Examples, Fortran 90 interface

" Hands on exercises

SuperLU tutorial

Solve sparse Ax=b : lots of zeros in matrix

@

A
1]

BERKELEY LAB

fluid dynamics, structural mechanics, chemical process simulation,
circuit simulation, electromagnetic fields, magneto-hydrodynamics,
seismic-imaging, economic modeling, optimization, data analysis,
statistics, . . .

Example: A of dimension 106, 10~100 nonzeros per row
Matlab: > spy(A)

Boeing/msc00726 (structural eng.) Mallya/lhrO1 (chemical eng.)
", h ., . -._}i-‘- .ﬁ 1
) e il - .
R .7 L :
TR L R, ‘; i
1&{'% \"\.\\ .-E".;,H q-h ' I!.
‘-.'-._.._‘- % " y - S :L
S N T T .. i
M TRAR e o, A
e » o . G 4 [
iy S S qq
H":.xx \\\\ '«'}{_‘_ | - "|.
L 1, L Y : - 3
SR i Y
i?:';'.a R . F l".
H}H = -"T"_ -

Strategies of sparse linear solvers

= Solving a system of linear equations Ax=Db
* Sparse: many zeros in A; worth special treatment

= Jterative methods: (e.g., Krylov, multigrid, ...)
= A is not changed (read-only)
= Key kernel: sparse matrix-vector multiply
» Easier to optimize and parallelize
= Low algorithmic complexity, but may not converge

= Direct methods
= A is modified (factorized)
* Harder to optimize and parallelize
= Numerically robust, but higher algorithmic complexity

= Often use direct method to precondition iterative method
= Solve an easy system: MTAx = M'b

SuperLU tutorial

Available direct solvers

= Survey of different types of factorization codes

http://crd.lbl.gov/~xiaoye/SuperLU/SparseDirectSurvey.pdf
= LLY(s.p.d.)

LDLT (symmetric indefinite)

LU (nonsymmetric)

QR (least squares)

= Sequential, shared-memory (multicore), distributed-memory, out-of-
core

= GPU, FPGA become active.

= Distributed-memory codes: usually MPI-based
= SuperLU_DIST [Li/Demmel/Grigori/Y amazaki]
* accessible from PETSc, Trilinos, ...
= MUMPS, PasTiX, WSMP, ...

SuperLU tutorial 7

SuperlLU Functionality

= LU decomposition, triangular solution
= Incomplete LU (ILU) preconditioner (serial SuperLU 4.0 up)
= Transposed system, multiple RHS
= Sparsity-preserving ordering
= Minimum degree ordering applied to ATA or AT™+A [MMD, Liu "85]
= ‘Nested-dissection’ applied to ATA or AT+A [(Par)Metis, (PT)-Scotch]

= User-controllable pivoting
= Pre-assigned row and/or column permutations
= Partial pivoting with threshold

= Equilibration: D, AD,

= Condition number estimation

= Jterative refinement

= Componentwise error bounds [Skeel *79, Arioli/Demmel/Duff *89]

SuperLU tutorial

Software Status

SuperLU SuperLU_MT SuperLU_DIST
Platform Serial SMP, multicore | Distributed
memory
Language C C + Pthreads C + MPI +
or OpenMP OpenMP +
CUDA
Data type Real/complex, Real/complex, Real/complex,
Single/double Single/double Double
Data structure CCS / CRS CCS /CRS Distributed CRS

® Fortran interfaces

= SuperLU_MT similar to SuperLU both numerically and in usage

SuperLU tutorial

Usage of SuperlLU

" Industry

= Cray Scientific Libraries
FEMLAB
HP Mathematical Library
IMSL Numerical Library
= NAG
* Sun Performance Library
= Python (NumPy, SciPy)

= Research
= In FASTMath Tools: Hypre, PETSc, Trilinos, ...
= M3D-C!, NIMROD (burning plasmas for fusion energys)
= Omegal3P (accelerator design)

SuperLU tutorial 10

Data structure: Compressed Row Storage (CRS)

= Store nonzeros row by row contiguously

= Example: N=7, NNZ =19

= 3 arrays:
= Storage: NNZ reals, NNZ+N+1 integers

5

8

11

13

17

20

nzval |1 a|2b|cd3|ledfilb5glhib6jkl?7
colind |14 25|123(245/57|4567/357
rowptr (1 3 5 8 11 13 17 20

Many other data structures: “Templates for the Solution of Linear Systems:
Building Blocks for Iterative Methods”’, R. Barrett et al.

SuperLU tutorial

11

User interface - distribute input matrices

= Matrices involved:
= A, B (turned into X) — input, users manipulate them

= L, U - output, users do not need to see them

= A (sparse) and B (dense) are distributed by block rows

P2

(e« x 2
___________ A
N _/

4 N

Local A stored in
Compressed Row Format

= Natural for users, and consistent with other popular packages: e.g.
PETSc

SuperLU tutorial

12

Distributed input interface

= Each process has a structure to store local part of A
Distributed Compressed Row Storage

~

typedef struct {
int_t nnz_loc; // number of nonzeros in the local submatrix
int_t m_loc; //number of rows local to this processor
int_t fst_row; // global index of the first row
void *nzval; // pointer to array of nonzero values, packed by row
int_t *colind; // pointer to array of column indices of the nonzeros

int_t *rowptr; // pointer to array of beginning of rows in nzval[]and colind[]

@Rformat_loc; /

SuperLU tutorial 13

Distributed Compressed Row Storage

PO S u u

A 1s distributed on 2 processors: I |u
1]p
Pl e [u
1 11 r
" Processor PO data structure: " Processor P1 data structure:

= nnz_loc=5 = nnz_loc="7
= m_loc=2 = m loc =3
= fst_ row =0 // 0-based indexing = fst_ row =2 //0-based indexing
= nzval ={s, u, u,|l, u} = nzval ={1, p,je, u,|I, I, r}
= colind={0, 2, 4,10, 1} = colind ={1,2,|3, 4,(0,1,4}
= rowptr={0,3,5} " rowptr={0,2,4,7 }

SuperLU tutorial 14

Internal : distributed L & U factored matrices

= 2D block cyclic layout

Matrix Process mesh
0 12D01 2 0 0| 1|2
34 |5 3 |4 []5 3 3145
0 |12/ 0]1] 2 0
3 M5 34 Pl n3
0 |12/ 0 1] 2 0
3 145 3l 5 PT
0 /112 0|1 0

ACTIVE

SuperLU tutorial

Process grid and MPI communicator

= Example: Solving a preconditioned linear system
M1Ax=M1b
M = diag(A;5 Ayys Ass)

- use SuperLU_DIST for 415
each diagonal block 3

= Create 3 process grids, same logical ranks (0:3),
but different physical ranks
= Each grid has its own MPI communicator

SuperLU tutorial 16

Two ways to create a process grid =

= superlu_gridinit(MPI_Comm Bcomm, int nprow,
int npcol, gridinfo_t *grid);

= Maps the first {nprow, npcol} processes in the MPI communicator
Bcomm to SuperLU 2D grid

= superlu_gridmap(MPI_Comm Bcomm, int nprow,

int npcol, int usermap|], int ldumap, gridinfo_t *grid);

= Maps an arbitrary set of {nprow, npcol } processes in the MPI

communicator Bcomm to SuperLU 2D grid. The ranks of the selected
MPI processes are given in usermap|] array.

For example:

o 1 2
Ol11 |12 |13
14 {15 |16

SuperLU tutorial 17

Review of Gaussian Elimination (GE)

= Solving a system of linear equations Ax=b

= First step of GE: (make sure ¢z not too small . .. Otherwise do pivoting)

T

a| w

A =
vl B

= Repeats GE on C

1 0

via [

S
O C
C=B-

= Results in {L\U} decomposition (A = LU)
= L lower triangular with unit diagonal, U upper triangular

= Then, x is obtained by solving two triangular systems with L and U

SuperLU tutorial

V-w

04

T

18

A
Sparse factorization)\\

@
@

@

Store A explicitly ... many sparse compressed formats
“Fill-in” . . . new nonzeros in L & U
@ Typical fill-ratio: 10x for 2D problems, 30-50x for 3D problems

Graph algorithms: directed/undirected graphs, bipartite graphs,
paths, elimination trees, depth-first search, heuristics for NP-hard
problems, cliques, graph partitioning, . . .

Unfriendly to high performance, parallel computing

¢ lrregular memory access, indirect addressing, strong task/data
dependency

O
U ﬂ ®©© 006

oo i >
..3. .*
|04 0 o) l //j (6]
o .50.
6 4 ST6[7 Q 0O
‘00007 5 \89

_/ N, O

19

Graph tool: reachable set, fill-path){

3 -+
DN
9
l
X + 0 0
S~ ~—~—_ ¥

Edge (x,y) exists in filled graph G* duetothe path: x> 7 >3 > 9 >y

@ Finding fill-ins €= finding transitive closure of G(A)

20

Algorithmic phases in sparse GE rrese)

|u|
asn

1. Minimize number of fill-ins, maximize parallelism (~10% time)

e Sparsity structure of L & U depends on that of A, which can be changed by
row/column permutations (vertex re-labeling of the underlying graph)

e Ordering (combinatorial algorithms; “NP-complete” to find optimum
[Yannakis ’ 83]; use heuristics)

2. Predict the fill-in positions in L & U (~10% time)
e Symbolic factorization (combinatorial algorithms)

3. Design efficient data structure for storage and quick retrieval of the
nonzeros

e Compressed storage schemes

4. Perform factorization and triangular solutions (~80% time)
e Numerical algorithms (F.P. operations only on nonzeros)
¢ Usually dominate the total runtime

@ For sparse Cholesky and QR, the steps can be separate;
for sparse LU with pivoting, steps 2 and 4 my be interleaved.

21

General Sparse Solver

= Use (blocked) CRS or CCS, and any ordering method

= Leave room for fill-ins ! (symbolic factorization)

= Exploit “supernode” (dense) structures in the factors
= Can use Level 3 BLAS

= Reduce inefficient indirect addressing (scatter/gather)
= Reduce graph traversal time using a coarser graph

AT < L B N

Supernode [6: 9]

L5

6 7 8 9

SuperLU tutorial

22

Numerical Pivoting

= Goal of pivoting is to control element growth in L. & U for stability
= For sparse factorizations, often relax the pivoting rule to trade with better

sparsity and parallelism (e.g., threshold pivoting, static pivoting , . . .)

= Partial pivoting used in sequential SuperLU and SuperLU_MT (GEPP)

= Can force diagonal pivoting (controlled by diagonal
threshold)
= Hard to implement scalably for sparse factorization

= Static pivoting used in SuperLU_DIST (GESP)

= Before factor, scale and permute A to maximize diagonal: P.D. AD_ = A’

S

X

b

= During factor A’ = LU, replace tiny pivots by J¢|4| , without changing data

structures for L & U

= If needed, use a few steps of iterative refinement after the first solution

=> quite stable in practice

SuperLU tutorial

23

Ordering : Minimum Degree

Local greedy: minimize upper bound on fill-in

i j k 1 1 g kb
1 [* X X X x] 1 X X X X
1 |x 1
j X Eliminate 1> J x
k X k X
I s 1 s

@/‘/®® Eliminate 1> Qva
S Pt

SuperLU tutorial 24

Ordering : Nested Dissection

= Model problem: discretized system Ax = b from certain PDEs,
e.g., 5-point stencil on n xn grid, N = n?
= Factorization flops: O(n®) = O(N¥?)
= Theorem: ND ordering gives optimal complexity in exact
arithmetic [George ’ 73, Hoffman/Martin/Rose]

15 10
” - - - OO OO OO OO
11 4 |12

6] 13

SuperLU tutorial 25

ND Ordering

= Generalized nested dissection [Lipton/Rose/Tarjan * 79]
= Global graph partitioning: top-down, divide-and-conqure

Best for largest problems
Parallel codes available: ParMetis, PT-Scotch

First level ‘4 0
X X

= Recurse on A and B

= Goal: find the smallest possible separator S at each level

= Multilevel schemes:
* Chaco [Hendrickson/Leland “94], Metis [Karypis/Kumar "95]

= Spectral bisection [Simon et al. "90- 95]

R

» Geometric and spectral bisection [Chan/Gilbert/Teng “94]

SuperLU tutorial 26

ND Ordering

SuperLU tutorial

100

200+

300

400

500

80O

700

800

500
0

. o
e,

el
O

g .

e

ey P Lt ey e

>

200 400 500 600
nonzeros = 4280

A, with ND ordering

Original A

500 . L
0

100 200 200 400 500 600

nz = 4280

A, with row-wise ordering

Factors L+U
0 - . .

A
- i

100 lf
[}
200 =47 3 !
"\
'Y
300} ' 4"

5

00| - gt

500 -

BOO - .

700+

800

900 T,]} --‘. ‘;1 -‘.{:‘ A
0 100 200 200 400 500

nonzeros = 26292

L &U factors

- A
(freers ‘m

HERKELEY LA

27

Ordering for LU (unsymmetric)

= (Can use a symmetric ordering on a symmetrized matrix
* Case of partial pivoting (serial SuperLU, SuperLU_MT):
Use ordering based on AT*A
* Case of static pivoting (SuperLU_DIST):
Use ordering based on AT+A

= (Can find better ordering based solely on A, without
symmetrization
« Diagonal Markowitz [Amestoy/Li/Ng "06]
* Similar to minimum degree, but without symmetrization
 Hypergraph partition [Boman, Grigori, et al. 08]
* Similar to ND on ATA, but no need to compute ATA

SuperLU tutorial 28

Ordering Interface in SuperlLU

= Library contains the following routines:
* Ordering algorithms: MMD [J. Liu], COLAMD [T. Davis]
= Utility routines: form AT+A , ATA

= Users may input any other permutation vector (e.g., using
Metis, Chaco, etc.)

(... N

set_default_options_dist (&options);

options.ColPerm = MY_PERMC; // modify default option
ScalePermstructlnit (m, n, &ScalePermstruct);

METIS (..., &ScalePermstruct.perm_c);

pdgssvx (&options, ..., &ScalePermstruct,...);

J

SuperLU tutorial 29

Symbolic Factorization

= Cholesky [George/Liu “81 book]
= Use elimination graph of L and its transitive reduction (elimination tree)
= Complexity linear in output: O(nnz(L))

= LU

= Use elimination graphs of L & U and their transitive reductions
(elimination DAGs) [Tarjan/Rose *78, Gilbert/Liu “93, Gilbert “94]

= Improved by symmetric structure pruning [Eisenstat/Liu ~92]
= Improved by supernodes
= Complexity greater than nnz(L+U), but much smaller than flops(LU)

SuperLU tutorial 30

Numerical Factorization

= Sequential SuperLU

= Enhance data reuse in memory hierarchy by calling Level 3 BLAS on
the supernodes

= SuperLU_MT

= Exploit both coarse and fine grain parallelism
* Employ dynamic scheduling to minimize parallel runtime

= SuperLU_DIST

= Enhance scalability by static pivoting and 2D matrix distribution

SuperLU tutorial 31

SuperLU_MT [Li/Demmel/Gilbert]

= Pthread or OpenMP

= Left-looking — relatively more READs than WRITEs

= Use shared task queue to schedule ready columns in the
elimination tree (bottom up)

= Over 12x speedup on conventional 16-CPU SMPs (1999)

LB
U
A
L \\
DONE WORKIN TOITJCH

D

SuperLU tutorial

® DONE O WORKING

SuperLU_DIST [Li/Demmel/Grigori/Yamazaki]

= MPI
= Right-looking — relatively more WRITEs than READs

= 2D block cyclic layout
= Look-ahead to overlap comm. & comp.
= Scales to 1000s processors

Matrix
Process mesh
012D012 0 0l1! 2
3= 415 34| [57 3 3| 4] 5
0O 1112 011 2 0
3 sl 39l osid n 8]
0O 112101} 2 0
3 |4 S s H:{
0O 1112 0|12 0

ACTIVE

33
SuperLU tutorial

Multicore platforms

**Intel Clovertown:
> 2.33 GHz Xeon, 9.3 Gflops/core
» 2 sockets x 4 cores/socket
» L2 cache: 4 MB/2 cores

*¢*Sun VictoriaFalls:
» 1.4 GHz UltraSparc T2, 1.4 Gflops/core
» 2 sockets x 8 cores/socket x 8 hardware threads/core
» L2 cache shared: 4 MB

SuperLU tutorial 34

Benchmark matrices —

nnz(A) | SLU_MT | SLU_DIST | Avg.
Fill Fill S-node

g7jac200 Economic 59,310 07M 33.7M 33.7 M
model

stomach 3D finite 213,360 3.0M 136.8M 1374 M 4.0
diff.

torso3 3D finite 259,156 44 M 7847M 7850M 3.1
diff.

twotone Nonlinear 120,750 12 M 114 M 114 M 2.3
analog
circuit

SuperLU tutorial 35

Intel Clovertown

**Maximum speedup 4.3, smaller than conventional SMP

*s*Pthreads scale better

***Question: tools to analyze resource contention?

SuperU_kT
10000 - ‘
—8—g7jac200
anon - —&—stomach
—5—tarsol
a000 - —A—twatone
FOo0 -
E||:||:|[:|

Mlops

SuperLU tutorial

zpeedup—Pthread { speedup-tdAP|

2.5

1.5¢

0.51

scaling rakio of Pthread ws. MPI

m | =A—twakane

—B-gTjac200
—&—stomach
—So—tarsal

threads or tasks

36

SunVictoriaFalls - multicore + multithread
SuperLU_DIST

SuperLU MT
2000 | ‘
—8-gTjac2in
—&—stomach
2500 —o—tarsol >
—A—twatone / D
2000 >
" /B\ﬁn
1500
= A/A\
\
1000 %3/
500
i 7 4 5 6 3z 64 128
threads
zcaling rakio of Pthread ws. MPI
2.4 ‘
—B-qvjac2in
_ 22 |-©5—stomach
% —So—tarsal
= 2l —A—twotone N
=
o
o /
AL D
3 / /
E 1.6
T /
14
=
o
'% 1.2 >
- 3/
—] H‘ e 4 g 16

SuperLU tutorial

threads or tasks

M¥lops

2000

2900+

2000

1500

1000

500

—8-g¥jac200
—&—stomach
—5—tarsnl
—A—twatohe

/O

A
z 4 6 32 Ad
tazks

= Maximum speedup 20
= Pthreads more robust, scale better
= MPICH crashes with large #tasks,

mismatch between coarse and

fine grain models

37

Performance of larger matrices

Name Application Data N |A| /N | |[L\V| Fill-ratio
type Sparsity | (1076)

matrix211 | Fusion, Real 801,378 | 161 1276.0 9.9
MHD eqgns
(M3D-C1)

cc_linear2 | Fusion, Complex | 259,203 | 109 199.7 7.1
MHD eqgns
(NIMROD)

matick Circuit sim. Complex | 16,019 | 4005 64.3 1.0
MNA method
(IBM)

cagel3 DNA Real 445,315 | 17 4550.9 608.5
electrophoresis

+¢ Sparsity ordering: MeTis applied to structure of A’ +A

SuperLU tutorial

38

Strong scaling (fixed size): Cray XE6 (hopper@nersc)

= 2 x 12-core AMD 'MagnyCours’ per node, 2.1 GHz processor

Triangular solution

” Factorization - 1
e e 10 g e Do ’ ']

OO -0~ cc_linear2 | =©—cc_linear2]

..................... +mat|ck +mat|ck

3
10 ; —8-cage13 | =Bcagel3

32 128 512 1024 2048

32 128 512 1024 2048 8
Cores

“ Up to 1.4 THlops factorization rate

39

SuperLU tutorial

A
|

= receere| |
L} -
SuperLU_DIST 3.0: better DAG scheduling \|
-
1 1 50 : ‘ 2200 ‘
3 Il version 2.5 Il version 2.5
1 —’_E 0 1 H 0 45 Il version 3.0 2000 Il version 3.0
‘ 3 40t il < 1800)
3/ 3 £ £
3 | Iﬂ»? FHT:; s 35- 51600
0O |q 0 i1 orl S 30 g 1400
"""""""""""""""" ; é 1200
25
3 1|5 4 H ﬁ £ § 1000t
5 %207 % 8001
0 Mq2—o=i| 2 0 2 £
,,,,,,,,,, 151 S L
N N 600
o o
: S 10t © L
3 14 3 4 3 & £ 400
5r 200+
N N 1
W 1126 I 2 0 8 32 128 512 2048 0 32 128 512 2048
Number of cores Number of cores
look—ahead windo

Accelerator, n=2.7M, fill-ratio=12 DNA, n = 445K, fill-ratio= 609

@ Implemented new static scheduling and flexible look-ahead algorithms that
shortened the length of the critical path.

@ lIdle time was significantly reduced (speedup up to 2.6x)
@ To further improve performance:

¢ more sophisticated scheduling schemes

¢ hybrid programming paradigms

40

Multicore / GPU-Aware eeeed]

u||

@ New hybrid programming code: MPI+OpenMP+CUDA, able to use
all the CPUs and GPUs on manycore computers.
@ Algorithmic changes:
¢ Aggregate small BLAS operations into larger ones.
¢ CPU multithreading Scatter/Gather operations.
¢ Hide long-latency operations.

@ Results: using 100 nodes GPU clusters, up to 2.7x faster, 2x-5x
memory saving.

@ New SuperLU_DIST 4.0 release, August 2014.

41

CPU + GPU algorithm

A
(freers ‘m

e
% 0. (D Aggregate small blocks
— Ty e — @ GEMM of large blocks
L —] I S —
| | | I,k / |
L —] I LT
VeL:lka,:
——
L.k GEMM-Phase Scatter-Phase
r
- T Vi— LU V. Host to GPU data transfer .
2 ol D ‘ | GPU acceleration:
s DGPU to host data transfer S f[w . l . ¢
= - - oftware pipelining to
2< 0, Vo LT, A pwp 8 .
S _\ overlap GPU execution
U .
U, with CPU Scatter, data

CPU
—

Vi—LU; Vi _—“\\\\\\

N
A Scatter(Vq) [Scatter(Vz)\\>

|:| Vo—LUo Scatter(Vo)

| J N _J
%,—J j - —_—— _—
Scatter rest of the block columns

—

~"
Stream-intialize First block column Wait

on CPU

on CPU

transfer.

42

ILU Interface

= Available in serial SuperLU 4.0, June 2009
= Similar to ILUTP [Saad]: “T” = threshold, “P” = pivoting

= among the most sophisticated, more robust than structure-
based dropping (e.g., level-of-fill)

= JLU driver: SRC/dgsisx.c
ILU factorization routine: SRC/dgsitrf.c
GMRES driver: EXAMPLE/ditersol.c

= Parameters:

» jlu_set_default_options (&options)

o options.ILU_DropTol — numerical threshold (T)
 options.ILU_FillFactor — bound on the fill-ratio (y)

SuperLU tutorial 43

Result of Supernodal ILU (S-ILU)

= New dropping rules S-ILU(T , Y)

» supernode-based thresholding (T)

= adaptive strategy to meet user-desired
fill-ratio upper bound (Y)

= Performance of S-ILU

* For 232 test matrices, S-ILU + GMRES converges with 138
cases (~60% success rate)

= S-ILU + GMRES is 1.6x faster than scalar ILU + GMRES

SuperLU tutorial

S-ILU for extended MHD (fusion energy sim.) ol

= AMD Opteron 2.4 GHz (Cray XT5)
" |[LU parameters: T =104, Y =10
= Up to 9x smaller fill ratio, and 10x faster

Problems Nonzeros | SuperLU S-ILU GMRES
(millions) | Time fill-ratio | time fill-ratio | Time Iters

matrix31 17,298 27m 33.3 13.1

matrix41 30,258 4.7 m 111.1 17.5 186 2.9 1.4 11
matrix61 66,978 10.6 m 612.5 26.3 54.3 3.0 7.3 20
matrix121 263,538 42.5m X X 1452 1.7 47.8 45

matrix181 589,698 95.2m X X 415.0 1.7 716.0 289

SuperLU tutorial

Tips for Debugging Performance

= Check sparsity ordering
= Diagonal pivoting is preferable
= E.g., matrix is diagonally dominant, . ..

= Need good BLAS library (vendor, ATLAS, GOTO,...)

= May need adjust block size for each architecture
(Parameters modifiable in routine sp_ienv())
* Larger blocks better for uniprocessor
* Smaller blocks better for parallellism and load balance

= Open problem: automatic tuning for block size?

SuperLU tutorial 46

Summary

= Sparse LU, ILU are important kernels for science and engineering
applications, used in practice on a regular basis
= Performance more sensitive to latency than dense case
= Continuing developments funded by DOE SciDAC projects
= Integrate into more applications

= Hybrid model of parallelism for multicore/vector nodes, differentiate
intra-node and inter-node parallelism

= Hybrid programming models, hybrid algorithms
= Parallel HSS precondtioners
= Parallel hybrid direct-iterative solver based on domain decomposition

SuperLU tutorial

47

Exercises of SuperLU_DIST

= https://redmine.scorec.rpi.edu/anonsvn/fastmath/docs/
ATPESC 2014/Exercises/superlu/README .html

= On vesta:
/gpis/vesta-1sO/projects/ FASTMath/ATPESC-2014/examples/superlu

/gpfs/vesta-fsO/projects/FASTMath/ATPESC-2014/install/superlu

= http://crd.lbl.gov/~xiaoye/SuperLU/slu hands on.html

SuperLU tutorial 48

Examples in EXAMPLE/

= pddrive.c: Solve one linear system

= pddrivel.c: Solve the systems with same A but different right-
hand side at different times
= Reuse the factored form of A

= pddrive2.c: Solve the systems with the same pattern as A
= Reuse the sparsity ordering
= pddrive3.c: Solve the systems with the same sparsity pattern
and similar values
= Reuse the sparsity ordering and symbolic factorization
= pddrived.c: Divide the processes into two subgroups (two

grids) such that each subgroup solves a linear system
independently from the other.

SuperLU tutorial 49

SuperLU_DIST Example Program

= EXAMPLE/pddrive.c

= Five basic steps

. Initialize the MPI environment and SuperLU process grid
Set up the input matrices A and B

Set the options argument (can modify the default)

Call SuperLU routine PDGSSVX

. Release the process grid, deallocate memory, and terminate the MPI
environment

N

SuperLU tutorial 50

Fortran 90 Interface in FORTRAN/

= All SuperLU objects (e.g., LU structure) are opaque for F90

= They are allocated, deallocated and operated in the C side and not
directly accessible from Fortran side.

= C objects are accessed via handles that exist in Fortran' s user
space

= In Fortran, all handles are of type INTEGER
= Example: FORTRAN/f 5x5.f90

A= [p , s=19.0, u=21.0, p=16.0, e=5.0, r=18.0, / =12.0

SuperLU tutorial 51

Exercises of SuperLU_DIST

= https://redmine.scorec.rpi.edu/anonsvn/fastmath/docs/
ATPESC 2014/Exercises/superlu/README .html

= On vesta:
/gpis/vesta-1sO/projects/ FASTMath/ATPESC-2014/examples/superlu

/gpfs/vesta-fsO/projects/FASTMath/ATPESC-2014/install/superlu

= http://crd.lbl.gov/~xiaoye/SuperLU/slu hands on.html

SuperLU tutorial 52

Examples in EXAMPLE/

= pddrive.c: Solve one linear system

= pddrivel.c: Solve the systems with same A but different right-
hand side at different times
= Reuse the factored form of A

= pddrive2.c: Solve the systems with the same pattern as A
= Reuse the sparsity ordering
= pddrive3.c: Solve the systems with the same sparsity pattern
and similar values
= Reuse the sparsity ordering and symbolic factorization
= pddrived.c: Divide the processes into two subgroups (two

grids) such that each subgroup solves a linear system
independently from the other.

SuperLU tutorial 53

SuperLU_DIST Example Program

= EXAMPLE/pddrive.c

= Five basic steps

. Initialize the MPI environment and SuperLU process grid
Set up the input matrices A and B

Set the options argument (can modify the default)

Call SuperLU routine PDGSSVX

. Release the process grid, deallocate memory, and terminate the MPI
environment

N

SuperLU tutorial 54

Fortran 90 Interface in FORTRAN/

= All SuperLU objects (e.g., LU structure) are opaque for F90

= They are allocated, deallocated and operated in the C side and not
directly accessible from Fortran side.

= C objects are accessed via handles that exist in Fortran' s user
space

= In Fortran, all handles are of type INTEGER
= Example: FORTRAN/f 5x5.f90

A= [p , s=19.0, u=21.0, p=16.0, e=5.0, r=18.0, / =12.0

SuperLU tutorial 55

